If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2u^2+25u+12=0
a = 2; b = 25; c = +12;
Δ = b2-4ac
Δ = 252-4·2·12
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-23}{2*2}=\frac{-48}{4} =-12 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+23}{2*2}=\frac{-2}{4} =-1/2 $
| u/2-11=3 | | -5x-3+5=-10 | | 6s^2+11s-7=0 | | (4/9)x=-(1/7) | | 2x+4(2x+3)=92 | | 5^(x−3)=25^(x−5) | | q^2+18q–19=0 | | q2+18q–19=0 | | 50=2x+7(x-7) | | X+14=4x-13 | | 5u^2-24u=0 | | 5u2–24u=0 | | 4h2–9h–9=0 | | 7v2+9v+2=0 | | (13x+10)+(10x+9)=180 | | 7/12*x=21/4 | | 4x+14=x+18 | | 7s^2-16s+4=0 | | 10x-6x+2+12=x+18 | | 2x^2+7x^2=225 | | (14x+2)+(11x+28)=180 | | 11d+20=-75 | | 7s2–16s+4=0 | | 7s^2–16s+4=0 | | 10x+2-6x+12=x+18 | | 6x−25+8x+51=180 | | 8x2^3x=512 | | -4/3w-3/4=w-1/2 | | x.x.5=181000 | | x^2(5)=181000 | | 3-1/2b=-1/3b-7 | | 2x(5)=181000 |